Defect Dominated Charge Transport and Fermi Level Pinning in MoS2/Metal Contacts

نویسندگان

  • Pantelis Bampoulis
  • Rik van Bremen
  • Qirong Yao
  • Bene Poelsema
  • Harold J W Zandvliet
  • Kai Sotthewes
چکیده

Understanding the electronic contact between molybdenum disulfide (MoS2) and metal electrodes is vital for the realization of future MoS2-based electronic devices. Natural MoS2 has the drawback of a high density of both metal and sulfur defects and impurities. We present evidence that subsurface metal-like defects with a density of ∼1011 cm-2 induce negative ionization of the outermost S atom complex. We investigate with high-spatial-resolution surface characterization techniques the effect of these defects on the local conductance of MoS2. Using metal nanocontacts (contact area < 6 nm2), we find that subsurface metal-like defects (and not S-vacancies) drastically decrease the metal/MoS2 Schottky barrier height as compared to that in the pristine regions. The magnitude of this decrease depends on the contact metal. The decrease of the Schottky barrier height is attributed to strong Fermi level pinning at the defects. Indeed, this is demonstrated in the measured pinning factor, which is equal to ∼0.1 at defect locations and ∼0.3 at pristine regions. Our findings are in good agreement with the theoretically predicted values. These defects provide low-resistance conduction paths in MoS2-based nanodevices and will play a prominent role as the device junction contact area decreases in size.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The unusual mechanism of partial Fermi level pinning at metal-MoS2 interfaces.

Density functional theory calculations are performed to unravel the nature of the contact between metal electrodes and monolayer MoS2. Schottky barriers are shown to be present for a variety of metals with the work functions spanning over 4.2-6.1 eV. Except for the p-type Schottky contact with platinum, the Fermi levels in all of the studied metal-MoS2 complexes are situated above the midgap of...

متن کامل

Engineering Efficient p-Type TMD/Metal Contacts Using Fluorographene as a Buffer Layer

DOI: 10.1002/aelm.201600318 structurally stable and largely lack dangling bonds. The production processes of TMDs are currently well established, ranging from top-down exfoliation of the bulk material using mechanical exfoliation, solution-based approaches and the bottom-up synthesis methods using chemical vapor deposition.[7,8] TMDs have gained significant importance as excellent candidates fo...

متن کامل

Electronic properties of MoS2/MoOx interfaces: Implications in Tunnel Field Effect Transistors and Hole Contacts

In an electronic device based on two dimensional (2D) transitional metal dichalcogenides (TMDs), finding a low resistance metal contact is critical in order to achieve the desired performance. However, due to the unusual Fermi level pinning in metal/2D TMD interface, the performance is limited. Here, we investigate the electronic properties of TMDs and transition metal oxide (TMO) interfaces (M...

متن کامل

Computational Study of Metal Contacts to Monolayer Transition-Metal Dichalcogenide Semiconductors

Among various 2D materials, monolayer transition-metal dichalcogenide (mTMD) semiconductors with intrinsic band gaps (1–2 eV) are considered promising candidates for channel materials in next-generation transistors. Low-resistance metal contacts to mTMDs are crucial because currently they limit mTMD device performances. Hence, a comprehensive understanding of the atomistic nature of metal conta...

متن کامل

Origin of Fermi-level pinning at GaAs/oxide interfaces through the hybrid functional study of defects

Gallium arsenide is currently under scrutiny for replacing silicon in microelectronic devices due to its high carrier mobilities. However, the widespread use of this semiconductor is hampered by the intrinsic difficulty of producing high-quality interfaces with oxides. Indeed, proper device operation is generally prevented by a high density of interface defect states which lead to Fermi-level p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017